IC Design Cheat Sheet
Katex Greek Letters
\( \begin{aligned} &\alpha \to \text{alpha } \newline &\beta \to \text{beta } \newline &\gamma \to \text{gamma } \newline &\delta \to \text{delta } \newline &\epsilon \to \text{epsilon } \newline &\varepsilon \to \text{varepsilon } \newline &\zeta \to \text{zeta } \newline &\eta \to \text{eta } \newline &\theta \to \text{theta } \newline &\iota \to \text{iota } \newline &\kappa \to \text{kappa } \newline &\lambda \to \text{lambda } \newline &\mu \to \text{mu } \newline &\nu \to \text{nu } \newline &\xi \to \text{xi } \newline &\omicron \to \text{omicron } \newline &\pi \to \text{pi } \newline &\rho \to \text{rho } \newline &\sigma \to \text{sigma } \newline &\tau \to \text{tau } \newline &\upsilon \to \text{upsilon } \newline &\phi \to \text{phi } \newline &\chi \to \text{chi } \newline &\psi \to \text{psi } \newline &\omega \to \text{omega } \newline \end{aligned} \)
Basic MOS Model
\( \begin{aligned} &V_{ds} \leq (V_{gs} - V_T): &I_d &= \frac{1}{2} K_p \frac{W}{L} [2(V_{gs}-V_{T})V_{ds} - V_{ds}^{2}] \newline &V_{ds} > (V_{gs} - V_T): &I_d &= \frac{1}{2} K_p \frac{W}{L} [(V_{gs}-V_{T})^{2}] \end{aligned} \)
Basic MOS Model2
$$I_d = \frac{1}{2} K_p \frac{W}{L} [2(V_{gs}-V_{T})V_{ds} - V_{ds}^{2}]$$
$$I_d = \frac{1}{2} K_p \frac{W}{L} [(V_{gs}-V_{T})^{2}]$$
More Katex Examples
\[ V_{ds} \leq (V_{gs} - V_T): I_d = \frac{1}{2} K_p \frac{W}{L} [2(V_{gs}-V_{T})V_{ds} - V_{ds}^{2}] \]
More Katex Examples2
$$ c = \pm\sqrt{a^2 + b^2} $$
\[ f(x)=\int_{-\infty}^{\infty} \hat{f}(\xi) e^{2 \pi i \xi x} d \xi \]
\begin{equation*} \rho \frac{\mathrm{D} \mathbf{v}}{\mathrm{D} t}=\nabla \cdot \mathbb{P}+\rho \mathbf{f} \end{equation*}
\begin{equation} \mathbf{E}=\sum_{i} \mathbf{E}_{i}=\mathbf{E}_{1}+\mathbf{E}_{2}+\mathbf{E}_{3}+\cdots \end{equation}
\begin{equation} a = b+c \end{equation}
$$\left( \frac{(100 \parallel 50 \parallel 3600)}{(100 \parallel 50 \parallel 3600) + 100 } \right) \cdot \frac{1}{3} \cdot \left( 0.75 \right) \approx 0.062$$